
Gursharan Singh Tatla

professorgstatla@gmail.com

Scheduling Algorithms

15-Feb-20111 www.eazynotes.com



Scheduling Algorithms

 CPU Scheduling algorithms deal with the problem 

of deciding which process in ready queue should 

be allocated to CPU.

 Following are the commonly used scheduling 

algorithms:

15-Feb-20112 www.eazynotes.com



Scheduling Algorithms

15-Feb-2011www.eazynotes.com3

 First-Come-First-Served (FCFS)

 Shortest Job First (SJF)

 Priority Scheduling

 Round-Robin Scheduling (RR)

 Multi-Level Queue Scheduling (MLQ)

 Multi-Level Feedback Queue Scheduling (MFQ)



First-Come-First-Served 

Scheduling (FCFS)

15-Feb-2011www.eazynotes.com4

 In this scheduling, the process that requests the 

CPU first, is allocated the CPU first.

 Thus, the name First-Come-First-Served.

 The implementation of FCFS is easily managed 

with a FIFO queue.

D C B A CPU

Tail of

Queue

Head of

Queue

Ready Queue



15-Feb-2011www.eazynotes.com5

 When a process enters the ready queue, its PCB 

is linked to the tail of the queue.

 When CPU is free, it is allocated to the process 

which is at the head of the queue.

 FCFS scheduling algorithm is non-preemptive.

 Once the CPU is allocated to a process, that 

process keeps the CPU until it releases the CPU, 

either by terminating or by I/O request.

First-Come-First-Served 

Scheduling (FCFS)



Example of FCFS Scheduling

15-Feb-2011www.eazynotes.com6

 Consider the following set of processes that arrive 

at time 0 with the length of the CPU burst time in 

milliseconds:

Process Burst Time (in milliseconds)

P1 24

P2 3

P3 3



Example of FCFS Scheduling

15-Feb-2011www.eazynotes.com7

 Suppose that the processes arrive in the order: 
P1, P2, P3.

 The Gantt Chart for the schedule is:

 Waiting Time for P1 = 0 milliseconds

 Waiting Time for P2 = 24 milliseconds

 Waiting Time for P3 = 27 milliseconds

P1 P2 P3

24 27 300

P1 24

P2 3

P3 3



Example of FCFS Scheduling

15-Feb-2011www.eazynotes.com8

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (0 + 24 + 27) / 3

= 51 / 3

= 17 milliseconds



Example of FCFS Scheduling

15-Feb-2011www.eazynotes.com9

 Suppose that the processes arrive in the order: 
P2, P3, P1.

 The Gantt chart for the schedule is:

 Waiting Time for P2 = 0 milliseconds

 Waiting Time for P3 = 3 milliseconds

 Waiting Time for P1 = 6 milliseconds

P1P3P2

63 300



Example of FCFS Scheduling

15-Feb-2011www.eazynotes.com10

 Average Waiting Time = (Total Waiting Time) / 
No. of Processes

= (0 + 3 + 6) / 3

= 9 / 3

= 3 milliseconds

 Thus, the average waiting time depends on the 
order in which the processes arrive.



15-Feb-2011www.eazynotes.com11

 In SJF, the process with the least estimated execution 

time is selected from the ready queue for execution.

 It associates with each process, the length of its next 

CPU burst.

 When the CPU is available, it is assigned to the 

process that has the smallest next CPU burst.

 If two processes have the same length of next CPU 

burst, FCFS scheduling is used.

 SJF algorithm can be preemptive or non-preemptive.

Shortest Job First Scheduling 

(SJF)



Non-Preemptive SJF

15-Feb-2011www.eazynotes.com12

 In non-preemptive scheduling, CPU is assigned 
to the process with least CPU burst time.

 The process keeps the CPU until it terminates.

 Advantage:

 It gives minimum average waiting time for a given 
set of processes.

 Disadvantage:

 It requires knowledge of how long a process will run 
and this information is usually not available.



Preemptive SJF

15-Feb-2011www.eazynotes.com13

 In preemptive SJF, the process with the smallest 

estimated run-time is executed first.

 Any time a new process enters into ready queue, 

the scheduler compares the expected run-time of 

this process with the currently running process.

 If the new process’s time is less, then the 

currently running process is preempted and the 

CPU is allocated to the new process.



Example of Non-Preemptive SJF

15-Feb-2011www.eazynotes.com14

 Consider the following set of processes that arrive 

at time 0 with the length of the CPU burst time in 

milliseconds:

Process Burst Time (in milliseconds)

P1 6

P2 8

P3 7

P4 3



Example of Non-Preemptive SJF

15-Feb-2011www.eazynotes.com15

 The Gantt Chart for the schedule is:

 Waiting Time for P4 = 0 milliseconds

 Waiting Time for P1 = 3 milliseconds

 Waiting Time for P3 = 9 milliseconds

 Waiting Time for P2 = 16 milliseconds

P4 P3 P2

9 16 240

P1

3

P1 6

P2 8

P3 7

P4 3



Example of Non-Preemptive SJF

15-Feb-2011www.eazynotes.com16

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (0 + 3 + 9 + 16 ) / 4

= 28 / 4

= 7 milliseconds



Example of Preemptive SJF

15-Feb-2011www.eazynotes.com17

 Consider the following set of processes. These 

processes arrived in the ready queue at the times 

given in the table:

Process Arrival Time Burst Time (in milliseconds)

P1 0 8

P2 1 4

P3 2 9

P4 3 5



Example of Preemptive SJF

15-Feb-2011www.eazynotes.com18

 The Gantt Chart for the schedule is:

 Waiting Time for P1 = 10 – 1 – 0 = 9

 Waiting Time for P2 = 1 – 1 = 0

 Waiting Time for P3 = 17 – 2 = 15

 Waiting Time for P4 = 5 – 3 = 2

P1 P1P4

1 170 10

P3

26

P2

5

P AT BT

P1 0 8

P2 1 4

P3 2 9

P4 3 5



Example of Preemptive SJF

15-Feb-2011www.eazynotes.com19

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (9 + 0 + 15 + 2) / 4

= 26 / 4

= 6.5 milliseconds



Explanation of the Example

15-Feb-2011www.eazynotes.com20

 Process P1 is started at time 0, as it is the only 

process in the queue.

 Process P2 arrives at the time 1 and its burst time 

is 4 milliseconds.

 This burst time is less than the remaining time of 

process P1 (7 milliseconds).

 So, process P1 is preempted and P2 is scheduled.



Explanation of the Example

15-Feb-2011www.eazynotes.com21

 Process P3 arrives at time 2. Its burst time is 9 

which is larger than remaining time of P2 (3 

milliseconds).

 So, P2 is not preempted.

 Process P4 arrives at time 3. Its burst time is 5. 

Again it is larger than the remaining time of P2 (2 

milliseconds).

 So, P2 is not preempted.



Explanation of the Example

15-Feb-2011www.eazynotes.com22

 After the termination of P2, the process with 

shortest next CPU burst i.e. P4 is scheduled.

 After P4, processes P1 (7 milliseconds) and then 

P3 (9 milliseconds) are scheduled.



Priority Scheduling

15-Feb-2011www.eazynotes.com23

 In priority scheduling, a priority is associated with 

all processes.

 Processes are executed in sequence according 

to their priority.

 CPU is allocated to the process with highest 

priority.

 If priority of two or more processes are equal than 

FCFS is used to break the tie.



Priority Scheduling

15-Feb-2011www.eazynotes.com24

 Priority scheduling can be preemptive or non-
preemptive.

 Preemptive Priority Scheduling:

 In this, scheduler allocates the CPU to the new process 
if the priority of new process is higher tan the priority of 
the running process.

 Non-Preemptive Priority Scheduling:

 The running process is not interrupted even if the new 
process has a higher priority.

 In this case, the new process will be placed at the head 
of the ready queue.



Priority Scheduling

15-Feb-2011www.eazynotes.com25

 Problem:

 In certain situations, a low priority process can be 

blocked infinitely if high priority processes arrive in 

the ready queue frequently.

 This situation is known as Starvation.



Priority Scheduling

15-Feb-2011www.eazynotes.com26

 Solution:

 Aging is a technique which gradually increases the 

priority of processes that are victims of starvation.

 For e.g.: Priority of process X is 10.

 There are several processes with higher priority in 

the ready queue.

 Processes with higher priority are inserted into 

ready queue frequently.

 In this situation, process X will face starvation.



Priority Scheduling

15-Feb-2011www.eazynotes.com27

(Cont.):

 The operating system increases priority of a 

process by 1 in every 5 minutes.

 Thus, the process X becomes a high priority 

process after some time.

 And it is selected for execution by the scheduler.



Example of Priority Scheduling

15-Feb-2011www.eazynotes.com28

 Consider the following set of processes that arrive 

at time 0 with the length of the CPU burst time in 

milliseconds. The priority of these processes is 

also given:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2



Example of Priority Scheduling

15-Feb-2011www.eazynotes.com29

 The Gantt Chart for the schedule is:

 Waiting Time for P2 = 0

 Waiting Time for P5 = 1

 Waiting Time for P1 = 6

 Waiting Time for P3 = 16

 Waiting Time for P4 = 18

P BT Pr

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

P2 P5 P1 P3 P4

0 1 6 16 18 19



Example of Priority Scheduling

15-Feb-2011www.eazynotes.com30

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (0 + 1 + 6 + 16 + 18) / 5

= 41 / 5

= 8.2 milliseconds



Another Example of Priority 

Scheduling

15-Feb-2011www.eazynotes.com31

 Processes P1, P2, P3 are the processes with their 

arrival time, burst time and priorities listed in table 

below:

Process Arrival Time Burst Time Priority

P1 0 10 3

P2 1 5 2

P3 2 2 1



Another Example of Priority 

Scheduling

15-Feb-2011www.eazynotes.com32

 The Gantt Chart for the schedule is:

 Waiting Time for P1 = 0 + (8 – 1) = 7

 Waiting Time for P2 = 1 + (4 – 2) = 3

 Waiting Time for P3 = 2 P AT BT Pr

P1 0 10 3

P2 1 5 2

P3 2 2 1

P1 P2 P3 P2 P1

0 1 2 4 8 17



Another Example of Priority 

Scheduling

15-Feb-2011www.eazynotes.com33

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (7 + 3 + 2) / 3

= 12 / 3

= 4 milliseconds



Round Robin Scheduling (RR)

15-Feb-2011www.eazynotes.com34

 In Round Robin scheduling, processes are 

dispatched in FIFO but are given a small amount 

of CPU time.

 This small amount of time is known as Time 

Quantum or Time Slice.

 A time quantum is generally from 10 to 100 

milliseconds.



Round Robin Scheduling (RR)

15-Feb-2011www.eazynotes.com35

 If a process does not complete before its time 

slice expires, the CPU is preempted and is given 

to the next process in the ready queue.

 The preempted process is then placed at the tail 

of the ready queue.

 If a process is completed before its time slice 

expires, the process itself releases the CPU.

 The scheduler then proceeds to the next process 

in the ready queue.



Round Robin Scheduling (RR)

15-Feb-2011www.eazynotes.com36

 Round Robin scheduling is always preemptive as 
no process is allocated the CPU for more than 
one time quantum.

 If a process’s CPU burst time exceeds one time 
quantum then that process is preempted and is 
put back at the tail of ready queue.

 The performance of Round Robin scheduling 
depends on several factors:

 Size of Time Quantum

 Context Switching Overhead



Example of Round Robin 

Scheduling

15-Feb-2011www.eazynotes.com37

 Consider the following set of processes that arrive 

at time 0 with the length of the CPU burst time in 

milliseconds:

 Time quantum is of 2 milliseconds.

Process Burst Time

P1 10

P2 5

P3 2



Example of Round Robin 

Scheduling

15-Feb-2011www.eazynotes.com38

 The Gantt Chart for the schedule is:

 Waiting Time for P1 = 0 + (6 – 2) + (10 – 8) + (13 – 12)

= 4 + 2 + 1 = 7

 Waiting Time for P2 = 2 + (8 – 4) + (12 – 10)

= 2 + 4 + 2 = 8

 Waiting Time for P3 = 4

P BT

P1 10

P2 5

P3 2

P1 P2 P3 P1 P2 P1 P2 P1 P1

0 2 6 10 12 134 8 15 17



Example of Round Robin 

Scheduling

15-Feb-2011www.eazynotes.com39

 Average Waiting Time = (Total Waiting Time) / 

No. of Processes

= (7 + 8 + 4) / 3

= 19 / 3

= 6.33 milliseconds



Multi-Level Queue Scheduling 

(MLQ)

15-Feb-2011www.eazynotes.com40

 Multi-Level Queue scheduling classifies the 
processes according to their types.

 For e.g.: a MLQ makes common division between 
the interactive processes (foreground) and the 
batch processes (background).

 These two processes have different response 
times, so they have different scheduling 
requirements.

 Also, interactive processes have higher priority 
than the batch processes.



Multi-Level Queue Scheduling 

(MLQ)

15-Feb-2011www.eazynotes.com41

 In this scheduling, ready queue is divided into 

various queues that are called subqueues.

 The processes are assigned to subqueues, 

based on some properties like memory size, 

priority or process type.

 Each subqueue has its own scheduling algorithm.

 For e.g.: interactive processes may use round 

robin algorithm while batch processes may use 

FCFS.



Multi-Level Queue Scheduling 

(MLQ)

15-Feb-2011www.eazynotes.com42



Multi-Level Feedback Queue 

Scheduling (MFQ)

15-Feb-2011www.eazynotes.com43

 Multi-Level Feedback Queue scheduling is an 
enhancement of MLQ.

 In this scheme, processes can move between 
different queues.

 The various processes are separated in different 
queues on the basis of their CPU burst times.

 If a process consumes a lot of CPU time, it is placed 
into a lower priority queue.

 If a process waits too long in a lower priority queue, it 
is moved into higher priority queue.

 Such an aging prevents starvation.



Multi-Level Feedback Queue 

Scheduling (MFQ)

15-Feb-2011www.eazynotes.com44



Multi-Level Feedback Queue 

Scheduling (MFQ)

15-Feb-2011www.eazynotes.com45

 The top priority queue is given smallest CPU time 
quantum.

 If the quantum expires before the process terminates, 
it is then placed at the back of the next lower queue.

 Again, if it does not complete, it is put to the last 
priority queue.

 The processes in this queue runs on FCFS 
scheduling.

 If a process becomes a victim of starvation, it is 
promoted to the next higher priority queue.



46 15-Feb-2011www.eazynotes.com


